.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "contents/tutorials_auto/02_coords/plot_01_test.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_contents_tutorials_auto_02_coords_plot_01_test.py: .. _tutorials-coords-ellipsoid: =================== Reference Ellipsoid =================== Parametrization Theory (Optional) --------------------------------- Consider the domain :math:`D = \left(-\pi,\pi\right]\times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]` In this sense, let :math:`\PosSph \in \Real^{3\times1}` be the position of a sphere surface, then. .. math:: \Pos\pare{\lambda, \beta} = \Pos_{\mathrm{surf}}\pare{\lambda, \beta} + h \hat{\boldsymbol{n}}\pare{\lambda, \beta} .. image:: /_static/tikzpic/ellipsoid.svg :align: center :width: 300px .. GENERATED FROM PYTHON SOURCE LINES 38-45 .. image-sg:: /contents/tutorials_auto/02_coords/images/sphx_glr_plot_01_test_001.png :alt: plot 01 test :srcset: /contents/tutorials_auto/02_coords/images/sphx_glr_plot_01_test_001.png :class: sphx-glr-single-img .. code-block:: Python from matplotlib import pyplot figure, axes = pyplot.subplots() pyplot.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.054 seconds) .. _sphx_glr_download_contents_tutorials_auto_02_coords_plot_01_test.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_01_test.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_01_test.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_01_test.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_